Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm
Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm
Blog Article
Emergency rescues require that first responders provide support to evacuate injured and other civilians who are obstructed by the hazards.In this case, the emergency personnel can take actions strategically in order to rescue lunch boxes people maximally, efficiently and quickly.The paper studies the effectiveness of a random neural network (RNN)-based task assignment algorithm involving optimally matching emergency personnel and injured civilians, so that the emergency personnel can aid trapped people to move towards evacuation exits in real-time.The evaluations are run on a decision support evacuation system using the Distributed Building Evacuation Simulator (DBES) multi-agent platform in various emergency scenarios.
The simulation results indicate that the RNN-based task assignment algorithm provides a near-optimal solution to resource allocation problems, which avoids resource wastage and improves the efficiency of Multi-Tools the emergency rescue process.